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ANALYTIC SOLUTION IN COMPLEX FORM FOR A CLASS OF 
EIJKTIC MODULI FOR A TWO-DIMENSIONAL INHOMOGENEITY OF A BODY' 

G.I. NAZAROV and N.G. PUCHKOVA 

A general solution is constructed for the two-dimensional problem of elasticity 
theory in the particuiar case of an inhomogeneity governed by the reiationships 

1: = E"r" crp (be); Y -7 I =:: 9 fr, i- C2F sin (0 7. ca)] rrp (68i 

where riis Young's modulus, and v is the Poisson's ratio. The constants c~. ~2. c3, o and 
b can be arrangedso that the known condition 0 r, Y $I!% is satisfied in the closed 

domain of a truncated wedge. Specific boundary value problems arc presented. 

1. Basic equations. For a two-dimensional inhomogeneity of an isotropic body, -the 
plane state of stress for a stress function I: (rr .(I), no mass forces and temperature expansron, 
is determined in a polar coordinate system r.0 by a linear differential equatron with vari- 

able coefficients /1,2/ 

A!~z!z(i)= f >($ .k ->$j$ + (1.1) 

~i~tf~i_f~(~_fjt(~-~jl 

with appropriate boundary conditions. 

The stress components are determined from the formulas 

(1.2) 

A number of boundary value problems has been examined earlier under the assumption that 

the Poisson's ratio is a constant and the Young's modulus is a function of the coordinates r.13 

/1,2/. In particular, problems have been examined /2/ under the assumptions that the stress 

function ii and the Young's modulus have the form (n, k,E, are constants) 

'- = r"F (8). E = I!+-'* (8) 

In this case, the problem for the function F(8) reduces to appropriate boundary conditions 

and a fourth-order ordinary differential equation with variable coefficients dependent on a 

given function *@j. 
In contrast to /l-44/, a class of functions E(r.6) and v(r.6) is presented below, forwhose 

stress functions a general solution is constructed in complex form and containing two arbitrary 

analytic functions of the complex variable z = II1 r + re. 

We henceforth examine the case when the right side in (1.1) is zero, i.e., the following 

conditions are satisfied for the function / 

which reduce after integration to the form 

i = r, .-I C.,T ,sirt (0 -t- c:,), 1’ -. fF I (1.3) 

It is known that (?< \ .I’? for all materials /l-3/. In this case, by taking accountof 

the expression for f in (l.l), we obtain the inequality 
_-..--- 
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1 < fE -< 31c (1.4) 

As will be shown below, in problems with a bounded domain rl :: r -", r.?% 8, ._ 0 1 O?, the con- 

stants c,. c2, ct and the constants in Ecan be selected so that the inequality (1.4) would be 

satisfied. The dependence (1.3) for v agrees with the known formula of the experimental the- 

ory of elasticity /5/ in which the shear modulus equals ~42f). 
Taking account of (1.3), we write (1.1) in the expanded form 

eAAU -,- (Ae)(M-)+ ?{$-&A" -L-$g-& AC'\ =0 (1.5) 

We extract that class of functions e(r, 0) for which the stress function Satisfying (1.5) 

has the form 

C- = a (r) B (6) x (z) +- cp (2) (1.6) 

Here a(r), p(O) are real functions of their arguments to be determined from (1.51, while 

x(z),r~(z) are arbitrary analytic functions of the logarithmic affix z = In r + ia. 

2. Method of solution. We form the appropriate derivatives of (1.6) and we insert 

them into (1.5). We consequently obtain 

f,z + (f2 + if3) x’ t (I, + if:,)z” = 0 (2.1) 

+(u"fi + 9 ~~ s)Ae + &(e"fi' .'. q + q)$ + 2 (u"'fi + + _ 9 + +_?$)$ + (2.2) 

e 
( 
a"'fi 2r.P~ :- - -G+$+,---_ 

2a"B" 2a'pv ++T) 

fsr= -$ 1% (a"'fi + S-F) j a'fiAe + (3a"p-~+~)$+~"!~~ 

f~=~12'(a.Bf-_+~p~)+ag'Ae +. +(a'fi'_~)$+(a"@ $?$_ J$,J?; 

fJ=~~~~-~--~),~a’~~--~~l 

f,=~128’(a’-_)e+cra’~+a’p~1 

We now consider the Young's modulus (or equivalently, the function e) to be a function 

with separable variables 

1 
e=e,(r)e2(0), et=&, e?=- t2 (ti) (2.3) 

In this case, we note that if the coefficients fr and fb in(2.2) are equated to zero, we 

then arrive at two equations with separable variables which we write in the form 

Let us examine the case p=o, q-l. Then the system (2.4) becomes 

(2.4) 

(2.5) 

Integrating the system of the first two and the last two equations in (2.5) and going 
over to the functions E and up we obtain 

E = E,r” exp (be), up = APL2 exp (bf3) (2.6) 

It can be seen by direct substitution of (2.3), (2.6) into (2.2) that the coefficients 

fl> f?. f3 vanish. Consequently, the function U in (1.6) takes the form 

u = /lra-2 x (a)exp (be) + 'p (2) (2.7) 

Here a, b,lT,, are arbitrary real constants, and A is a complex constant. 
If E is inserted by means of (2.6) into the initial equation (l-5), then in contrast to 

the case examined in /3/, we arrive at an equation with variable coefficients 
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r'AAU -;@--I- b’) AU- ajar -&AC +- bf A+-0 t I’ .ti, 

The real and imaginary parts of the function IY in (2.71, and their linear combinations, 

are real solutions of the linear equation (2.8) of (1.5). 

Taking account of (2.7), we write (1.2) and (1.3) in the form 

" .i 1 = [c, -/- cd sin (8 i cJ] r" exp (be) (2.9) 

T = -He Ar” [(a - 
i 

l)bp’(b + i(a + l))~‘~i~~] exp(b8) ‘(“It”) } (2.11) 

a@= HC .4r"[(a $ l)(a 
i 

2)z :-(2a 3)x’-, ;(“I exp(zJ9) - &$} (2.i2! 

Let us note that it can be seen by analogous means that the functions 

b_* _ 5 (2.13) ,: . iv l)? = ('* cg sin (0 cl). L; : Q(z) -1 v(z) 

satisfy (1.1). Here z -I In r - it) and x(z),(p(z) are arbitrary analytic functionsofthe complex 
argument z. The function U in (2.13) has the same form as the known Muskhelishvilisolution 

for a homogeneous body /6/. 

3. Examples. Let us illustrate the method of determining x and + in (2.10)- (2.12) in 

the example of a radial stress distribution (T = se = 0). For this case we arrive, from (2.111, 

at three equalities 
(a + 1)x + x' = 0, (a -+ i'X' + x' =: 0, CJ" - '(' r= 0 

Integrating and then taking into account that z = Inr ?- (0. we obtain 

% = A,-(““exp (-I (a 7 l)t3]. cp = D,r exp (ie) + D, (3.i) 

Here .4.D,. D, are arbitrary constants (complex, in the general case). 

We find by substituting (3.1) into (2.10) and (2.12) 

Y8 = ,I, J; = lie -+ 16' cd?-- 2~ -- X6(3 + I)] exp[b -i(0+ i) 81) (3.2) 

1. .l,. IA* 

Let us extract the real part in 0.2). We consequently obtain 

0, : 6 (8) / r (3.3) 
0 (9) -- [a, cm (a $- I)0 i LI, sin (a + 1)8] exp (be) 

0, = (b' - ~9 - "olA, - 26 (a 2 1)A , op = (bz - a* - ?a)A, - 26 (a + l)A, 
(3.4) 

The function (3.3) characterizes the radial distribution of the stress. Examples for 

such a stress are presented in /1,2,7/ and a method is indicated for detenniningtheconstants 

A, and AZ. Without going into details, let us say that, for instance, for the Vahartproblem 

of a wedge (see /l/, Fig.25) these constants are found from the equilibrium conditions forthe 

part of the wedge cut by an arc of arbitrary radius, which are determined by 

7/) 

i 
r5, co> UdO ... -- I',. ~,,?~""& : - pz 

Here H,. 8, are angles measured from the Or axis directed downward for a 

cation of the wedge relative to the Ox axis, and P,.IQ are COmpnents Of the 

the apex of the elastic wedge. 

the formulas /2, 

(3.5) 

nonsymmetric lo- 

given pressure at 

Taking account of (3.3), the integrals (3.5) are evaluated in elementary functions, and 

determination of the constants raises no difficulties. Problems on bending of a wedge /7,8/ 

and of a curved bar /2/ can be solved analogously. 
Condition (1.4) for the Poisson's ratio \ can be satisfied by different methods be select- 

ing the constants c,.r,,c3,a,b in (1.3) and (2.6) 
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For example, in the case of a truncated wedge r,<r<r,, 6,666 6, let v be given at three 

angular points on the boundary of this wedge M, (Ir 1, r e . Y,), AI, (T,, es; v,), M, (r,, 8,; v,). Inserting these 

values in (3.6) and solving the appropriate system of three equations for Cl, ca. %I we obtain 

c 
I 
= (Vtf i) r;+'--(V,+ I) r:+' 

(T? - Q) r,a’:a 
erp (-be,) 

tg f,= B sin& - Asia e1 
Acose1-EBst12 

vr+ 1 A = Texp (-be*) - c,. B = q-l srp (--lrB,) - c, 
rl r1 

E~ = 

11 

X+! exp (-be,) -c, [T: bin (er + cs)l-l 
T. 1 

For simplicity in the ccmputation, assuming here a = I, b = 1, rz= 1, r1 = 0.9. v1 = 0.04, Vt = 0.2, 

V~ = 0.26, e1 = -15”. 8,= 300, we find C1 = 1.89, c1 = -4.31, cS = 0,599. The relief of the function V (T, 6) 
for this case is characterized by the Table 1, where values of v.iP are presented. Amropriate 

tables can be compiled for the Young's modulus E, and the shear modulus G by means of (1.3) 
and (2.6). 

Table 1 

I 1 e3--15o / --loo ) --5* V 1 50 / 1oD j 15’ 1 200 26 ) 30’ 

1.00 121 134 144 151 156 159 166 i73 180 200 
0.98 109 122 134 142 151 155 168 177 192 215 
0.M 86 lOi 121 134 144 154 lti9 182 200 27.8 
O.94 il 90 iO!l 119 138 15t 169 184 208 241 
11.92 56 52 !I7 113 130 146 167 188 214 250 
O.'JO 40 ti3 82 $18 123 142 165 189 219 262 

Let us note that if we put c,=O and (I= --i into (2.6) and (3.6), then v will depend 
only on the angle 6, and the Young's modulus on r and 0. In this case the constants c1 and 
cg are determined in terms of the given angles in the problem of a wedge (3.3), (3.4) for 
which the function g(9)takes the simple form 

g (6) = (b2 - 3)Ar elP (be) 

Let us examine another approach. Asbefore,let the function q(s) be determined by (3.1) 
and the function X(Z) in (2.10)- (2.12) will be sought in the form of a complex Fourier series 

x (I) = x (A,,’ + LA,“) exp (nwz) (3.7) 
n=1 

Here ois a fixed characteristic number of the specific problem. The constants An', An" 
should be determined from the obundary conditions. 

Let us form the appropriate derivative of (3.7), and introduce them into (2.10)- (2.12) 
and then extract the real part. We consequently obtain 

m 
0, = e~p be z; P+n@ [(A&’ - ZbnoA,“) cos ~3 - (A.,&" + 22~~4,') sin no01 (3.8) 

n=r 

~=t?rp bl3 5 P+no [(A,.4,'-A~A,")cosno6 - (A&,"+ AsA,,‘) sinnwe] 
n=1 

:@ = erp be 5 A,r“+"" (‘4,' c0s no8 - A,,” sin noe) 
n=1 

A1 = a+ L*+ 2 + no (1 - no), A,= b(a + I+ no) 
A, = ~10 (a + 1 + no), A, = (a + I)@ + 2)+ no (20 + 3 + no) 

For o+ne+-1 these formulas can be used for the case when there are no stresses at 
the wedge apex (r=O). The formulas (3.8) contain 2n(n= 1,2,...) arbitrary constants II A,', A, 
for whose determination in the wedge domain O<r<R,6,<6,i6,the following problem can be 
formulated for example: er = F,(~),T = F,(6) for T = R. 

In this case the usual Fourier method must be used with the sole differencethatthegiven 
functions F,@)and F%(e) multiplied first by e~p (-be), must be expanded in the Fourier series 
in sines and cosines with argument noe in the range e1<6 < 8,. 
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If the term (0 "'-.- iLl,")exll(--nwr) is additionally Inserted into (3.71, then _he posslr,l::! ,' 
is apparent of formulating analogous boundary conditions for a truncated cone. 

In conclusion, iie note that if it is required in (3.8) that ug = I= 0 cradlal s!_rcss dr:- 

tribution), then the equality ,A? 1: will result ~1 the condition nw =- -(a t_ 1,. ':‘i1e:, \, !: 

1, = 0. A, = 62 -a? -?n. Consequently, the signs of the sums in (3.7) and (3.8) mu:;: by, ox,rtLd 
and we obtain the formulas (i.?) and (3.4) already examined. 
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