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ANALYTIC SOLUTION IN COMPLEX FORM FOR A CLASS OF
ELASTIC MODULI FOR A TWO-DIMENSIONAL INHOMOGENEITY OF A BODY

G.I. NAZAROV and N.G. PUCHKOVA
A general solution is constructed for the two-dimensional problem of elasticity
theory in the particular case of an inhomogeneity governed by the relationships

E = Eoq%exp (88); v -= 1 = r%{e, + c,rsin (0 =- cy)] exp (68}

where £ is Young's modulus, and v is the Poisson's ratio. The constants € . ¢, a and
¢ can be arrangedso that the known condition ¢ v <!, is satisfied in the closed
domain of a truncated wedge. Specific boundary value problems are presented.

1. Basic equations. For a two-dimensional inhomogeneity of an isotropic body, the
plane state of stress for a stress function [I7{r 8), no mass forces and temperature expansion,

is determined in a polar coordinate system r. 8 by a linear differential equation with vari-
able coefficients /1,2/
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with appropriate boundary conditions.
The stress components are determined from the formulas
1 76U 190U _ g ;1 ali _ U 5
e i AR bt o T‘Ta'e?)v To= 57 (1.2)

A number of boundary value problems has been examined earlier under the assumption that
the Poisson's ratio is a constant and the Young's modulus is a function of the coordinates r, 8

/1.2/ In particulay, prcblems have been examined /’)/ under the assnmnfrmnc that the stress

/1,2/. particular problems have been examine
function ¢ and the Young s modulus have the form (n,k E, are constants)
I"=r"F(®), E =Ly (@®)
In this case, the problem for the function £ {8) reduces to appropriate boundary conditions
and a fourth-order ordinary differential equation with variable coefficients dependent on a

given function ().
In contrast to /1-—4/, a class of functions £ (r,8) and v(r,8) is presented below, for whose

stress functions a general solution is constructed in complex form and containing two arbitrary

analytic functions of the complex variable o= inr k8,
We henceforth examine the case when the right side in (l1.1) is zero, i.e., the following

conditions are satisfied for the function f

St a0 F( )=
which reduce after integration to the form
=y e sin (B b o) v fE - (1.3)
It is known that O<Z v ', for all materials /1—3/. In this case, by taking account of

the expression for f in (l.1l), we obtain the inequality
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1 << JE < 3 (1.4)

As will be shown below, in problems with a bounded domain ry <71 < Ty, 0, 778 70, the con-
stants ¢, ¢;, ¢3 and the constants in E can be selected so that the inequality (l1.4) would be
satisfied. The dependence (1.3) for v agrees with the known formula of the experimental the-
ory of elasticity /5/ in which the shear modulus equals 1/(2f).

Taking account of (1.3), we write (1.1) in the expanded form

/de @ 1 de

eAAU - (Ae) (AT) + 2 \—6———AU =

\—o
r or T 09 AU (1.5)

We extract that class of functions e (r, 6) for which the stress function satisfying (1.5)
has the foxm

U=a{@B®x@+ e (1.6)
Here a (r), P (0) are real functions of their arguments to be determined from (1.5), while
y(2), ¢ (z) are arbitrary analytic functions of the logarithmic affix 2z = In r 4 i0.

2. Method of solution. We form the appropriate derivatives of (1.6) and we insert
them into (1.5). We consequently obtain

fir + (e + ifs) ot + (fa +if )7 =0 (2.1)
f1=(a"ﬁ+——ﬂ )Ae+ ( @- . “b ) +9( ”’FH-aﬁ of 2B Za:ﬁ"‘)ie_‘r (2.2)
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We now consider the Young's modulus (or equivalently, the function e) to be a function
with separable variables

1 i
e=e(Me®). e=7y, =7

(2.3)

In this case, we note that if the coefficients f, and fs in(2.2) are equated to zero, we
then arrive at two equations with separable variables which we write in the form

P = ) = (S ) = o
L
Fl )= e

Let us examine the case p =0, ¢ = 1. Then the system (2.4) becomes

WLt e L@ 2 _g e B o B g (2.5)
e £ r 7 g T ro e P e ‘T*
Integrating the system of the first two and the last two equations in (2.5) and going
over to the functions £ and af we obtain
E = Eyr" exp (b8), af = Are2 exp (80) (2.6)

It can be seen by direct substitution of (2.3), (2.6) into (2.2) that the coefficients
fi.fs, f3 vanish. Consequently, the function U in (1.6) takes the form
U = Are2 y (z)exp (b0) + ¢ (2) (2.7)
Here a,b, E, are arbitrary real constants, and 4 is a complex constant.

If E is inserted by means of (2.6) into the initial equation (1.5), then in contrast to
the case examined in /3/, we arrive at an equation with variable coefficients
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PAAU - (@t 4 b AU — 2 (ar > AU 5 b AU) =0 oy

The real and imaginary parts of the function U in (2.7), and their linear combinations,
are real solutions of the linear equation (2.8) of (1.5).
Taking account of (2.7), we write (1.2) and (1.3) in the form

v i 1 =lec, -+ corsin (B 4 cy)} r® exp (b86) (2.9)
o, = Re {Ar" (@4 b3 27 (1= 2b) 7 — 7"l exp(b) - “’_jL} (2.10)
= —Refarti@= Hbr = b+ i+ )7 = ilexp ) » HELEL) (2.11)
08=H1'{.4r“ @+ e -2)z =(2a -3)7 - (lexp(b8) ~ “’—,—"—} (2.12)
Let us note that it can be seen by analogous means that the functions
E _—-é—" (v Dri=c, -corsin(® -c3) U = Z7(z) -~ @ (z) (2.13)
satisfy (l.1). Here z - Inr — 0 and Y% (z),¢ (z) are arbitrary analytic functions of the complax

argument z. The function U in (2.13) has the same form as the known Muskhelishvili solution
for a homogeneous body /6/.

3. Examples. Let us illustrate the method of determining x and ¢ in (2.10)— (2.12) in
the example of a radial stress distribution (1t =064 =0). For this case we arrive, from (2.11),

at three equalities
@+ Dx+x =0 ta+1y+yx =0 ¢ —¢ =0

Integrating and then taking into account that z = Inr + 6, we obtain
v = Ar~@*Vexp{—i(a + 1)8), ¢ = D,rexp (i0) + D, (3.1)

Here 4, D, D, are arbitrary constants (complex, in the general case).
We find by substituting (3.1) into (2.10) and (2.12)

g =0, 3, = le {—-r'- fb? - a?— 2a — 2ib(a+1)]exp[b——-i(a+1)6]} (3.2)
-y - 1A,
Let us extract the real part in (3.2). We consequently obtain
o, <g@®/r (3.3)
¢ (8) -= [a, cos (a L 1)0 + a, sin (a + 1)8] exp (46) (3.4)

ap = (b2 —a? — 204, = 2b(a + 1A, a, = (b* — a? — 2a)4, — 2b(a + DA,

The function (3.3) characterizes the radial distribution of the stress. Examples for
such a stress are presented in /1,2,7/ and a method is indicated for determining the constants
A, and A,. Without going into details, let us say that, for instance, for the Vahart problem
of a wedge (see /1/, Fig.25) these constants are found from the equilibrium conditions for the
part of the wedge cut by an arc of arbitrary radius, which are determined by the formulas /2,

/)
(3.5)

3 ]
J
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Here 8,0, are angles measured from the 0z axis directed downward for a nonsymmetric lo-
cation of the wedge relative to the 0r axis, and p,, p, are components of the given pressure at

the apex of the elastic wedge.
Taking account of (3.3), the integrals (3.5) are evaluated in elementary functions,
determination of the constants raises no difficulties. Problems on bending of a wedge /7,8/

and of a curved bar /2/ can be solved analogously.
Condition (1.4) for the Poisson's ratio v can be satisfied by different methods be select-

and

ing the constants ¢.«. a,ae, b in (1.3) and (2.6)

v 4 ve (o 4 o sin (B 5 c)]r® exp (b6) (3.6)
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For example, in the case of a truncated wedge r, <r<r, 8, <0< 6, let v be given at three
angular points on the boundary of this wedge M, (r, i v;), M, (s Oy va), My (r;, 855 vy). Inserting these
values in (3.6) and solving the appropriate system of three equations for ¢,csc¢n we obtain

(s 13— (v + 1) M
a = aa
(ra—rn)nr,

Bsin®, — Asin 6,
Acos0 — BcosH,

exp (—b0,)

tgey =

A= Yl-'%iexp (—b0) —¢,. B= l“ia_lexp (—b8,) — ¢
L5Y 5]

o= [LL’ exp (—b8,) — ] {r2 sin (8; + cs)]
T

For simplicity in the computation, assuming here a=1, b=1, p=1, 1, = 09, v, = 0.04, v, = 0.2,
vy = 0,26, 8, = —15° 8, = 30°, we find ¢ = 1.89, ¢, = —1.31, ¢ = 0,599. The relief of the function v(r, 8)
for this case is characterized by the Table 1, where values of +.i0*® are presented. Appropriate
tables can be compiled for the Young's modulus E, and the shear modulus G by means of (1.3)
and (2.6).

Table 1

r CESNES ~10° —5° 0° s 4 o10e 150 200 | 25 | 30°

1.00 121 134 144 151 | 156 | 159 | 166 | 173 | 480 | 200
0.98 109 122 134 142 | 151 157 } 168 [ 177 | 192 | 215
0.96 86 107 121 134 | 144 | 134 | 169 | 182 [ 200 | 228
0.94 ) 90 109 119 | 138 | 154 | 169 | 184 | 208 | 24l
0.92 56 72 47 113 | 130 { 146 | 167 | 188 | 214 | 250
0.60 40 63 82 a8 | 123 | 142 | 165 | 189 | 219 [ 262

Let us note that if we put ¢ =0 and a= —1 into (2.6) and (3.6}, then v+ will depend

only on the angle 6, and the Young's modulus on r and 6. In this case the constants ¢, and
¢; are determined in terms of the given angles in the problem of a wedge (3.3), (3.4) for
which the function g(0) takes the simple form

g {(6) = (b* — 3)4, exp (46}

Let us examine another approach. Asbefore, let the function @(z) be determined by (3.1)
and the function y ) in (2.10)— (2.12) will be sought in the form of a complex Fourier series

A () = 3 (A, +i4,") exp (nw2) (3.7
n=t

Here o is a fixed characteristic number of the specific problem. The constants An', An"
should be determined from the obundary conditions.

Let us form the appropriate derivative of (3.7), and introduce them into (2.10)— (2.12)
and then extract the real part. We consequently obtain

G, = exp b0 Z rOHO (A Ay — 2bnwAp”) €0s nel  — (AyAp” + 2bnwAy’) sin nwd] (3.8)

n=1

e
T=exp b8 N rHN (8,4 — B3An”) cOs 08 — (A;An" + Agdy') sin nwB]

n=1
sg=expbB 3| Ar® (Ay’ cosnwd — Au” sin nwd)
n=t
Ay=a4 12+ 24+n0 (I —re), Ay=1b(a+ 1+ ne)
Ay = no (a + 1+ nw), A= (a+ 1)e + 2) + no (22 + 3 + nw)

For a4 ne s —1 these formulas can be used for the case when there are no stresses at
the wedge apex (r=0). The formulas (3.8) contain 2n(n= 1,2,...) arbitrary constants 4, 4,
for whose determination in the wedge domain 0<r < R,8, <0<8, the following problem can be
formulated for example: ¢,= F,(6), 1= F, (8) for r=R.

In this case the usual Fourier method must be used with the sole difference that the given
functions F;(@)and F, (8) multiplied first by exp (—b0), must be expanded in the Fourier series
in sines and cosines with argument nre8 in the range 6,< 6 < 6.
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If the term (B, -:-iBr")exp (—nw:) 1s additionally inserted into (3.7), then the possinilit:
is apparant of formulating analogous boundary conditions for a truncated cone.

In conclusion, we note that if it is required in (3.8) that oy =1 =10 (radial stress dii-
tribution), then the equality A, ¢« will result in the condition nw = —(a t 1i. Theu Ny -t
A, = 0,4, =6 —a* - 22 Consequently, the signs of the sums in (3.7) and (3.8) must be omitted
and we obtain the formulas {(3.23) and (1.4) already cxamined.
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